Preliminary steps
Loading necessary packages
using Plots
using HTTP, CSV
using DataFrames: DataFrame
using AugmentedGaussianProcesses
Loading the banana dataset from OpenML
data = HTTP.get("https://www.openml.org/data/get_csv/1586217/phpwRjVjk")
data = CSV.read(data.body, DataFrame)
data.Class[data.Class .== 2] .= -1
data = Matrix(data)
X = data[:, 1:2]
Y = data[:, end];
We create a function to visualize the data
function plot_data(X, Y; size=(300,500))
Plots.scatter(eachcol(X)...,
group = Y,
alpha=0.2,
markerstrokewidth=0.0,
lab="",
size=size
)
end
plot_data(X, Y; size = (500, 500))
Run sparse classification with increasing number of inducing points
Ms = [4, 8, 16, 32, 64]
models = Vector{AbstractGP}(undef, length(Ms) + 1)
kernel = transform(SqExponentialKernel(), 1.0)
for (i, num_inducing) in enumerate(Ms)
@info "Training with $(num_inducing) points"
m = SVGP(X, Y,
kernel,
LogisticLikelihood(),
AnalyticVI(),
num_inducing,
optimiser = false,
Zoptimiser = false
)
@time train!(m, 20)
models[i] = m
end
[ Info: Training with 4 points 0.040458 seconds (194.92 k allocations: 53.531 MiB) [ Info: Training with 8 points 0.053185 seconds (195.06 k allocations: 77.974 MiB) [ Info: Training with 16 points 0.099110 seconds (195.35 k allocations: 127.072 MiB) [ Info: Training with 32 points 0.468675 seconds (195.93 k allocations: 226.167 MiB, 58.96% gc time) [ Info: Training with 64 points 0.547182 seconds (197.39 k allocations: 427.982 MiB)
Running the full model
@info "Running full model"
mfull = VGP(X, Y,
kernel,
LogisticLikelihood(),
AnalyticVI(),
optimiser = false
)
@time train!(mfull, 5)
models[end] = mfull
Variational Gaussian Process with a Bernoulli Likelihood with Logistic Link infered by Analytic Variational Inference
We create a prediction and plot function on a grid
function compute_grid(model, n_grid=50)
mins = [-3.25,-2.85]
maxs = [3.65,3.4]
x_lin = range(mins[1], maxs[1], length=n_grid)
y_lin = range(mins[2], maxs[2], length=n_grid)
x_grid = Iterators.product(x_lin, y_lin)
y_grid, _ = proba_y(model,vec(collect.(x_grid)))
return y_grid, x_lin, y_lin
end
function plot_model(model, X, Y, title = nothing; size = (300, 500))
n_grid = 50
y_pred, x_lin, y_lin = compute_grid(model, n_grid)
title = if isnothing(title)
(model isa SVGP ? "M = $(AGP.dim(model[1]))" : "full")
else
title
end
p = plot_data(X, Y; size=size)
Plots.contour!(p,
x_lin, y_lin,
reshape(y_pred, n_grid, n_grid)',
cbar=false, levels=[0.5],
fill=false, color=:black,
linewidth=2.0,
title=title
)
if model isa SVGP
Plots.scatter!(p,
eachrow(hcat(AGP.Zview(model[1])...))...,
msize=2.0, color="black",
lab="")
end
return p
end;
Now run the prediction for every model and visualize the differences
Plots.plot(plot_model.(models, Ref(X), Ref(Y))...,
layout=(1, length(models)),
size=(1000, 200)
)
Bayesian SVM vs Logistic
We now create a model with the Bayesian SVM likelihood
mbsvm = VGP(X, Y,
kernel,
BayesianSVM(),
AnalyticVI(),
optimiser = false
)
@time train!(mbsvm, 5)
51.942522 seconds (495 allocations: 10.898 GiB, 14.98% gc time)
And compare it with the Logistic likelihood
Plots.plot(plot_model.(
[models[end], mbsvm],
Ref(X),
Ref(Y),
["Logistic", "BSVM"];
size = (500, 500)
)...,
layout=(1, 2))
This page was generated using Literate.jl.